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Abstract

Splitting methods are frequently used in solving stiff differential equations and it is common to split the system of

equations into a stiff and a nonstiff part. The classical theory for the local order of consistency is valid only for stepsizes

which are smaller than what one would typically prefer to use in the integration. Error control and stepsize selection

devices based on classical local order theory may lead to unstable error behaviour and inefficient stepsize sequences.

Here, the behaviour of the local error in the Strang and Godunov splitting methods is explained by using two different

tools, Lie series and singular perturbation theory. The two approaches provide an understanding of the phenomena

from different points of view, but both are consistent with what is observed in numerical experiments.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Since the important early contributions by Marchuk [11] and Yanenko [18], splitting methods have

steadily increased their popularity, and today they constitute an invaluable tool in several areas of com-

putational mathematics. For instance, in the area of geometric integration, such splitting methods are

frequently used to obtain structure preserving algorithms [7,12]. In some large scale engineering problems,
operator splitting may be the only known practical way of carrying out time integration. Splitting is used in

different ways, sometimes one applies splitting to the space dimensions, like in the original work of Strang

[16]. Another much used possibility is to split according to some physical phenomenon, for instance by
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splitting linear stiff diffusion terms and nonlinear convection terms and integrating each of them separately.

Recently, many authors have investigated splitting methods for PDEs and in particular studied the order of

convergence of the local and global error [1,3,9].
In what follows, we shall study the behaviour of the local error in splitting methods used to integrate stiff

ordinary differential equations. We claim and demonstrate through examples that this behaviour may have

severe consequences for the performance of standard local stepsize control devices and so the design of

variable stepsize integrators for such schemes should be given careful attention. Some ideas similar to those

presented here have been used also by Lubich in [10].

Generally, we start from a system of autonomous ordinary differential equations, say

y0 ¼ dy
dt

¼ F ðyÞ; yð0Þ ¼ y0: ð1Þ

The solution space may well be a manifold or in many cases simply (some open subset of) Euclidean space.

Splitting can be described by a decompositon of F into a sum of two or more terms, for simplicity, say

F ðyÞ ¼ AðyÞ þ BðyÞ: ð2Þ
Applying a splitting method to this problem means that we compose solutions of each of the two problems

y0 ¼ AðyÞ and y 0 ¼ BðyÞ; ð3Þ
over small time intervals. To ease the notation we introduce flow maps, e.g. we denote by yðhÞ ¼ expðhF Þy0
the solution of (2) with initial condition yð0Þ ¼ y0. Thus, one simple splitting method is obtained by cal-

culating y1 � yðhÞ as
y1 ¼ expðhAÞ expðhBÞy0:

It is well known and easy to prove that whenever the operators A and B are sufficiently smooth, the local

error behave as

expðhF Þy0 � expðhAÞ expðhBÞy0 ¼ Oðh2Þ as h ! 0: ð4Þ

In (1), one typically imposes a Lipschitz condition on the vector field F , and reasonable splitting methods

therefore also have Lipschitz continuous A and B, but for stiff problems we often have one or more stiffness

parameters such that F is not uniformly bounded in these parameters. Such a situation may for instance

occur if, say

F ðyÞ ¼ AðyÞ þ BðyÞ ¼ AðyÞ þ 1

e
~BðyÞ;

where e > 0. For small values of e we typically observe the local error behaviour of (4) only when h < e.
This phenomenon is similar to what we see in the theory of order reduction in Runge–Kutta methods first

discussed in [4,14] and further elaborated by Dekker and Verwer [2].

In the rest of the paper, we will always assume that the two terms of the splitting is a nonstiff vector field

A and a stiff vector field B. We consider two first-order splitting methods BA;AB, and two second-order

splitting methods BAB and ABA, defined as follows:

BA y1 ¼ expðhBÞ expðhAÞy0;
AB y1 ¼ expðhAÞ expðhBÞy0;

BAB y1 ¼ exp
h
2
B

� �
expðhAÞ exp h

2
B

� �
y0;

ABA y1 ¼ exp
h
2
A

� �
expðhBÞ exp h

2
A

� �
y0:

ð5Þ
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In Section 2 we present an example of a stiff–nonstiff splitting which serves as a motivation for the further

studies. We then analyse the local error in splitting methods in two different ways. First we use an approach

based on tools from the theory of Lie series, and then we will repeat the analysis by means of singular
perturbation theory. The two approaches provide an understanding of the problems from two different

points of view, each having its strengths and weaknesses.
2. An example

A very popular test case for ODE solvers is the Van der Pol oscillator which can be formulated as a

second-order ODE

x00 þ 1

e
ðx2 � 1Þx0 þ x ¼ 0; xð0Þ ¼ x0; x0ð0Þ ¼ _x0:

We rewrite this into a first-order system, setting y :¼ x; z :¼ x0, and split as follows:

y0

z0

� �
¼ z

�y

� �
þ 1

e
0

ð1� y2Þz

� �
¼ AðvÞ þ 1

e
~BðvÞ ð6Þ

with v ¼ ðy; zÞ. The flows of each of the two vector fields on the right-hand side can be computed exactly,

the first, A is a rotation in the yz-plane, the second, B ¼ ð1=eÞ~B, leaves y constant and decays z exponentially
with time constant proportional to 1=e, thus the second vector field is stiff near the initial point for small

values of e.
This equation is now solved by a variable stepsize scheme based on splitting. The solution is advanced by

the second-order scheme BAB, and the local error estimate is given by

le ¼ kvnþ1 � ~vnþ1k;

where ~vnþ1 is computed by the first-order splitting scheme BA. The stepsize is adjusted to ensure the local

error to be less than the tolerance, however the stepsize is also restricted above by 0.1. The results of the

simulation in terms of the solution and the step sizes chosen by the code are given in Fig. 1. There is a good
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Fig. 1. To the left: The limit cycle of Van der Pol�s equation. To the right: The numerical solution of y as well as the stepsize sequence.
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Fig. 2. Local error estimate at t ¼ 6:71.
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agreement between the phase plots of the numerical and the exact limit cycle, even if there is a considerable

phase error present. The bottom right picture shows a more curious situation. There is a severe drop in the

stepsize at t � 6:7 without any apparent reason. The cause of this drop is made apparent by considering the
local error estimate as a function of the stepsize h, see Fig. 2.

This phenomenon is usually referred to as the ‘‘hump’’, e.g. [8, p. 113]. Another illustration of the sit-

uation is given in Fig. 3, giving a plot of the local errors for different values of e. For hK e the error behaves
as expected from the classical error analysis. For hJ e the order is reduced to 1 for the AB and the ABA

schemes, while the error is constant at the size of e for the BA and the BAB schemes. However, for hJ
ffiffi
e

p

the order is 2 for both methods. By these pictures, it is apparent that an error estimator based on a

combination of the BA and the BAB schemes is bound to fail. In fact, the dominant error terms for the BA

and the BAB scheme are the same for hJ e, causing the odd behaviour of the error estimate as can be seen
in Fig. 2.

The ‘‘hump’’ phenomenon has been explained for Runge–Kutta and Rosenbrock methods by Hairer

et al. [5,6] by consideration of the singular perturbation problems. A similar analysis for splitting methods

is performed in Section 4. Before that however, we will perform a local error analysis by means of Lie series.
3. Local error analysis with Lie series

The analysis we present in this section is based on the use of Lie series, see for instance Olver [13].

Suppose that D is some open subset of Rm. We denote by CxðD;RÞ the analytic functions on D. All dif-

ferential equations we consider belong to the set of analytic vector fields on D, denoted XðDÞ. One can also

think of D as a local coordinate chart belonging to some manifold M, most of the discussion that follows

make only local considerations. Choosing coordinates x1; . . . ; xm, the vector field F can be written in the

form ðF1ðxÞ; . . . ; FmðxÞÞ, but it is useful to associate F with the differential operator

F1ðxÞ
o

ox1
þ � � � þ FmðxÞ

o

oxm
: ð7Þ

For instance, in (6) we would write

AðyÞ ¼ y2
o

oy1
� y1

o

oy2
; BðyÞ ¼ 1

e
ð1� y21Þy2

o

oy2
: ð8Þ

Thus, in this sense, vector fields are operators which act on functions defined on D. In particular, the

operators satisfy the important Leibniz� rule

F ½w � u� ¼ F ½w� � uþ w � F ½u�;

for any two analytic functions u;w. Here we have used square brackets to signify that a vector field acts on
a function, e.g. F : w 7!F ½w�. The definition behaves naturally under coordinate transformations, so we

define a vector field as a linear operator F : CxðD;RÞ ! CxðD;RÞ.
The usefulness of this way of interpreting vector fields is evident when we for w 2 CxðD;RÞ; t 2 R,

p 2 D, and F 2 XðDÞ consider the expansion

wðexpðtF ÞpÞ ¼ wðpÞ þ tF ½w�ðpÞ þ t2

2
F 2½w�ðpÞ þ � � � ¼ expðtF Þ½w�ðpÞ: ð9Þ

The powers of the vector fields is defined in the obvious way, F 2½w� ¼ F ½F ½w��, etc. Also in the sequel,

we will sometimes make formal calculations with series without considering their convergence
properties.
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We now introduce the Lie Poisson bracket, ½�; �� : XðDÞ � XðDÞ ! XðDÞ, between two vector fields A and

B as the commutator,

C ¼ ½A;B� ¼ AB� BA: ð10Þ

In terms of local coordinates, x1; . . . ; xm, we have C ¼
P

i Ciðo=oxiÞ where we easily calculate from Eqs. (7)

and (10)

Ci ¼
Xm
j¼1

Aj
oBi

oxj

�
� Bj

oAi

oxj

�
:

It will be useful to define the operator adB : XðDÞ ! XðDÞ as adBðAÞ ¼ ½B;A�.
The main idea of the analysis lies in studying various parts of the Lie series expansions for the vector

fields F ¼ Aþ B, keeping in mind that the stiff vector field B and its powers do not give any useful in-

formation since no appropriate bounds can be obtained, whereas we will assume that expðtðAþ BÞÞ as well
as expðtBÞ can be uniformly bounded in tP 0.
3.1. Expanding the exact solution

In the analysis of the local error, we consider the difference

wðexpðhðAþ BÞÞpÞ � wðUhpÞ; p 2 D;

where Uh can be any of the splitting approximations (5). In what follows, we are going to make formal

calculations with Lie series (9) and in manipulating these series we are not going to discuss convergence

properties, but just refer to the a priori analyticity assumption.

We compute

expðhðAþ BÞÞ½w�ðpÞ ¼ wðpÞ þ hðAþ BÞ½w�ðpÞ þ � � �

Thus, we shall make formal calculations with the operator series expðhðAþ BÞÞ as well as series of the typeX
k

ak ad
k
BðAÞ ¼ /ðadBÞðAÞ;

in terms of analytic functions /ðfÞ ¼
P1

k¼0 akf
k. In particular we shall make use of the fact that

expðhBÞ/ðadBÞðAÞ½w�ðpÞ ¼ /ðadBÞðAÞ½w�ðexpðhBÞpÞ:

We start by considering the following formula, easily proved by induction:

ðAþ BÞm ¼ Bm þ
Xm�1

‘¼0

B‘AðAþ BÞm�‘�1
:

Substituting into the series for expðtðAþ BÞÞ we obtain

expðtðAþ BÞÞ ¼ expðtBÞ þ
X1
m¼1

tm

m!

Xm�1

‘¼0

B‘AðAþ BÞm�‘�1
:

An even more compact and convenient form can be obtained by using the identity

Z t

0

sk

k!
ðt � sÞ‘

‘!
ds ¼ tkþ‘þ1

ðk þ ‘þ 1Þ! ;
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thus by substituting m ¼ k þ ‘þ 1 in the summation above, one gets

expðtðAþ BÞÞ ¼ expðtBÞ þ
Z t

0

expððt � sÞBÞA expðsðAþ BÞÞds:

This can be interpreted as the linear variation of constants formula, see e.g. [9], but as shown, it makes

perfect sense also as formal calculation with Lie series. Applying the formula once again to the term
expðsðAþ BÞÞ, we get

expðtðAþ BÞÞ ¼ expðtBÞ þ
Z t

0

expððt � sÞBÞA expðsBÞdsþ R; ð11Þ

where

R ¼
Z t

0

Z s

0

expððt � sÞBÞA expððt � rÞBÞA expðrðAþ BÞÞdrds:

We apply the well-known identity

expð�sBÞA expðsBÞ ¼ Adexpð�sBÞðAÞ ¼ expð�adsBÞðAÞ ð12Þ

in (11), where AdC is the linear operator defined as

AdCðAÞ ¼ CAC�1: ð13Þ

We get

expðtðAþ BÞÞ ¼ expðtBÞ þ expðtBÞ
Z t

0

expð�sadBÞðAÞdsþ R;

which we can write in the form

expðtðAþ BÞÞ ¼ expðtBÞ þ t expðtBÞ/ðadtBÞðAÞ þ R; ð14Þ

where / is the analytic function

/ðfÞ ¼ 1� expð�fÞ
f

: ð15Þ

We observe that the assumed bounds on expðtBÞ, expðtðAþ BÞÞ for t > 0, and A immediately imply that

R ¼ Oðh2Þ.
3.2. The numerical solution

We consider the splitting methods BAB; ABA; BA; AB. One should note that the ordering of expo-

nentials is reversed when passing from the flow map to the formal series of operators. That is, given two
vector fields A and B in XðDÞ, w 2 CxðD;RÞ and p 2 D we find

wðexpðAÞ expðBÞpÞ ¼ expðAÞ½w�ðexpðBÞpÞ ¼ expðBÞ½expðAÞ½w��ðpÞ
:¼ expðBÞ expðAÞ½w�ðpÞ: ð16Þ
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We get by formal calculations, expanding the flow of the nonstiff vector field A.

BAB

exp
hB
2

� �
expðhAÞ exp hB

2

� �
¼ expðhBÞ þ h expðhBÞAdexpð�h

2
BÞðAÞ þ Oðh2Þ;

ABA

exp
hA
2

� �
expðhBÞ exp hA

2

� �
¼ expðhBÞ þ h

2
expðhBÞ A

�
þAdexpð�hBÞðAÞ

�
þ Oðh2Þ;

BA

expðhAÞ expðhBÞ ¼ expðhBÞ þ h expðhBÞAdexpð�hBÞðAÞ þ Oðh2Þ;

AB

expðhBÞ expðhAÞ ¼ expðhBÞ þ h expðhBÞðAÞ þ Oðh2Þ:

We now use identity (12) together with the expansion for the exact flow (14) to obtain in all four cases an

expression for the operators involved in the local truncation error of the form

ElocðxÞ ¼ hUðadhBÞðAÞðehBxÞ; ð17Þ

where U is an analytic function

UðfÞ ¼ /ðfÞ � ~/ðfÞ;

/ðfÞ is given by (15), and ~/ðfÞ is as in the following table:

The graphs of each function UðfÞ are displayed in Fig. 4. In particular, we note the behaviour of jUðfÞj near
f ¼ 1:

3.3. Linear stiff and polynomial nonstiff vector fields

Type BAB ABA BA AB

~/ðfÞ e�f=2 1
2
ð1þ e�fÞ e�f 1

Type BAB ABA BA AB

jUðf ! 1Þj 1
f

1
2

1
f 1
We consider the important case when the stiff vector field B is linear with constant coefficients. In this

section the stiffness parameter e is not present in the problem, we do not assume that the vector field is of

the form ð1=eÞ~B, but rather that the stiffness is reflected in the size of the eigenvalues of B.
This case is important for instance when one uses a linearization of a general vector field and thereby

extracts the stiff part as a linear term and leaves the nonlinear part nonstiff. In PDEs one frequently has the
situation that there is a stiff linear part which is integrated by an implicit scheme whereas the somewhat less

stiff nonlinear part is integrated with an explicit scheme.
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Let D � Rm have coordinates x ¼ ðx1; . . . ; xmÞ. It is well known [17, p. 13] that the tangent space at each

point in D is naturally isomorphic to H�
m;1, the dual of the space of linear polynomials with vanishing

constant term. In the above coordinates, this space has as basis ðo=ox1; . . . ; o=oxmÞ. Locally, we can model

the tangent bundle as D�H�
m;1. We consider the vector field B : x 7!

P
i;j bijxjðo=oxiÞ. The nonstiff poly-

nomial vector field A is of the form

AðxÞ ¼
X
i

aiðxÞ
o

oxi
;

where each aiðxÞ is a polynomial in x1; . . . ; xm of degree q. Denote this space by Pm;q, and we denote by
H�

m;1 �Pm;q � XðDÞ the corresponding space of polynomial vector fields. It is convenient for us to further

divide the space Pm;q into a direct sum of its homogeneous components according to the degree of the

polynomials

Pm;q ¼ Hm;0 	 � � � 	Hm;q:

Similarly, H�
m;1 �Hm;q is the corresponding space of vector fields whose components are homogeneous

polynomials. The crucial observation now is that for linear vector fields, the operator adB : XðDÞ ! XðDÞ is
invariant on every subspace H�

m;1 �Hm;k. The dimension ofHm;q is
mþ q� 1

m� 1

� �
and one can for instance

use a basis of monomials indexed by ði1; . . . ; iqÞ where 16 i1 6 � � � 6 iq 6m, of the form xi1 � xi2 � � � xiq .
To begin with, note that the linear vector field B, acting as a derivation operator, is an endomorphism of

Hm;q.

Lemma 3.1. Suppose that B, acting as a derivation onHm;1, has m linearly independent eigenvectors p1; . . . ; pm
corresponding to eigenvalues k1; . . . ; km, so that B½pi� ¼ kipi. Then B, acting as a derivation on Hm;q has
mþ q� 1

m� 1

� �
eigenvalues with corresponding linearly independent eigenvectors, indexed by 16 i1 6

� � � 6 iq 6m such that

kði1;...;iqÞ ¼
Xq
r¼1

kir ; pði1;...;iqÞ ¼
Ym
r¼1

pir :

Proof. That the listed vectors are linearly independent is clear, since the change of coordinates

ðy1; . . . ; ymÞ ¼ ðp1ðxÞ; . . . ; pmðxÞÞ turns the polynomials pði1;...;iqÞ into the standard monomial basis for Hm;q in

the new variables y1; . . . ; ym. The derivation property of B yields
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B½pði1;...;iqÞ� ¼ B½pi1 � � � piq � ¼
Xq
‘¼1

B½pi‘ �
Yq
r 6¼‘
r¼1

pir ¼
Xq
‘¼1

ki‘

 !
pði1;...;iqÞ: �

The operator adB as an endomorphism of the space H�
m;1 �Hm;q is now constructed as

adB ¼ I� � B� B� � I ;

I� and I being the identity operators on H�
m;1 and Hm;q, respectively. Note also that here B� is the dual

operator of B.
Clearly the two terms in this expression for adB commute so they share a common set of eigenvectors.

We have:
Theorem 3.2. The operator adB acts as an endomorphism on H�
m;1 �Hm;q. Suppose that B is nondefective as

an endomorphism of Hm;1, with right eigenvectors pi 2 Hm;1 and left eigenvectors ai 2 H�
1;m, 16 i6m. Then

its eigenvalues indexed by 16 j6m, 16 i1 6 � � � 6 iq 6m are

kı;j :¼ ki1 þ ki2 þ � � � þ kiq � kj

with corresponding eigenvectors

aj � pði1;...;iqÞ;

pði1;...;iqÞ ¼
Qq

r¼1 pir 2 Hm;q.
Proof. Writing i ¼ ði1; . . . ; iqÞ and ki ¼
Pq

r¼1 kir we get

ðI� � B� B� � IÞðaj � piÞ ¼ ðaj � B½pi�Þ � ðB�aj � piÞ ¼ ðaj � kipiÞ � ðkjaj � piÞ
¼ ðki � kjÞðaj � piÞ: �

Introducing the projectors Pi;j ¼ P�
j �Pi onto the invariant subspace corresponding to the eigenvalue

ki;j of adB, we write

adB ¼
X
i;j

ki;jP
�
j �Pi:

Since the Pi;j have the propertiesX
i;j

Pi;j ¼ I ; Pi;jsPi0;j0 ¼ dði;jÞ;ði0 ;j0ÞPi;j;

we get for any analytic function U that

UðadBÞ ¼
X
i;j

Uðki;jÞPi;j;

so that in terms of the eigenvector decomposition of A,

A ¼
X
i;j

ai;jðaj � piÞ:
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From (17) we get that for any nonstiff polynomial vector field A the principal term of the local error is

ElocðxÞ ¼ h
X
i;j

ai;jUðhki;jÞðaj � piðexpðhBÞxÞÞ ¼ h
X
i;j

ai;jUðhki;jÞehkiðaj � piðxÞÞ:

If we split the eigenvalues as ki;j ¼ ki � kj, we can further simplify the expression and we find that

ElocðxÞ ¼ h
X
i;j

ai;jU1ðhki; hkjÞðah � piðxÞÞ; ð18Þ
U1ðu; vÞ ¼ /1ðu; vÞ � ~/1ðu; vÞ;

where

/1ðu; vÞ ¼ ðexpðuÞ � expðvÞÞ=ðu� vÞ;

and ~/1ðu; vÞ depends on the splitting methods as follows:

To further analyse the behaviour of Eloc, one may study one mode at the time of the decomposition above.

Suppose that the spectrum of B can be separated into two nonempty sets, rðBÞ ¼ rsðBÞ [ rnsðBÞ, as de-

scribed in [2, p. 9]. We exclude the possibility of B having large positive real parts or with large imaginary

parts. The set rs :¼ rsðBÞ consists of eigenvalues k with large negative real parts. In particular, we are

interested in situations where the stepsize h satisfies �
ffiffiffiffiffiffiffiffiffi
Rek

p
/1=h/�Rek. The set rns :¼ rnsðBÞ consists of

eigenvalues belonging to some moderately sized disc centered at the origin. More to the point, we assume

that with the stepsizes of interest, the function U1 is always well approximated by its truncated Maclaurin

series when the arguments are of the form h
P

k kik where each kik 2 rns. In terms of the stiffness parameter e
one would assume that each ke 2 rs is such that hReðkeÞ ! �1 as e ! 0þ. For an eigenvalue

ki ¼ ki1 þ � � � þ kiq we will also say that ki 2 rs if at least one kir 2 rs and that otherwise ki 2 rns.

Considering the decomposition (19) of ElocðxÞ, we see that the modes can be divided into four classes. We

discuss each of the cases, and we will slightly abuse the big-oh notation in what follows.

1. ki 2 rs, kj 2 rs. In this case, U1ðu; vÞ ¼ OðexpðkÞÞ for all four splitting methods where k 2 rs so the con-
tribution from such modes is negligible.

2. ki 2 rs, kj 2 rns. Here we get

/1ðhki; hkjÞ � � expðhkjÞ
hki

:

For the for splitting methods we see that the cases BAB and AB will all have exponentially small
contributions from ~/1ðhki; hkjÞ whereas in ABA and BA it would add contributions of size

expðhkjÞ ¼ Oð1Þ.
3. ki 2 rns, kj 2 rs. Now

/1ðhki; hkjÞ � � expðhkiÞ
hkj

:

The situation for the 4 splitting methods is similar to the previous case except that the role of BA and AB

is reversed: We can neglect the contribution of ~/ in the BAB and BA whereas both ABA and AB will

have contributions of size expðhkiÞ ¼ Oð1Þ.

Type BAB ABA BA AB

~/1ðu; vÞ eðuþvÞ=2 1
2
ðeu þ evÞ ev eu
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4. ki 2 rns, kj 2 rns. Here, both arguments to U1 are ‘‘small’’, so that Taylor series can be used and we con-

sider the first nonzero term in the Maclaurin expansion of U1ðu; vÞ:

These expressions correspond to the classical order results for the various splitting methods.
Summing up, one can now clearly see that the local error in the four splitting methods is composed from

terms in the decomposition (18) of four different types 1–4 above. Type 1 can be ignored, and we assume the
stepsize to belong to an interval where type 4 is small compared to types 2 and 3. The local error in modes

of type 2 and 3 consists of two terms, corresponding to the exact and numerical solution. The exact solution

always contributes with terms of type 1=ki with ki 2 rs. The numerical solution contributes with expo-

nentially small terms in the BAB case, but in the other three cases there will always be terms of type

h expðhkjÞ ¼ OðhÞ, kj 2 rns. Note that with the range of stepsizes we consider, the term h expðhkjÞ, k 2 rns

will dominate the term 1=ki; ki 2 rs. These results are summarized in Table 1.

3.3.1. The steady case

The results derived above are valid for arbitrary initial values, so they include also the transient phase of

the integration when the problem is not necessarily considered to be stiff. In order to understand what

happens after the transient has died out, one may assume that the initial value is of the form x ¼ expðtBÞy
and y is chosen arbitrarily. This just causes U1ðhki; hkjÞ in (18) to be replaced by U1ðhki; hkjÞ expðtkiÞ and x
by y. The analysis differ only in the type 2 case above for the BA splitting. Rather than getting the

h expðhkjÞ ¼ OðhÞ; kj 2 rns contribution, one gets the term h expðtki þ hkjÞ with ki 2 rs, which can be ne-

glected. As a consequence, the dominating term from type 2 nodes in the BA splitting is now Oð1Þ. See also
Table 1.

One may easily apply these results to the case of general polynomial vector fields, simply by adding up

the contributions from all of the homogeneous components. The approach presented here also suggests a

way to consider arbitrary analytic vector fields A.
Finally, we note that the degree of commutativity between the stiff and nonstiff vector fields is here

measured in terms of the size of the coefficients ai;j.

3.4. Application to the van der Pol equation

In this case, the stiff vector field B is nonlinear, so the results of the previous subsection do not apply, but

the general expression (18) for the local error can still be used. It is necessary to obtain information about

the vector field UðadhBÞðAÞ where A and B ¼ ð1=eÞ~B are given by (8), and since U is an analytic function, we

begin by calculating arbitrary powers adk
hBðAÞ ¼ adk

h~BðAÞ, where h ¼ h=e. It easily proved by induction that

adk
~BðAÞ ¼ ð1� y2Þkz o

oy
þ y
�
� ðy2 � 1Þk þ 2kz2ð1� y2Þk�1

	 o

oz
:

Type BAB ABA BA AB

1
24
ðu� vÞ2 � 1

12
ðu� vÞ2 1

2
ðu� vÞ � 1

2
ðu� vÞ
Table 1

The behaviour of the local error in general for linear B and polynomial A

Type BAB ABA BA AB

General Oð1Þ OðhÞ OðhÞ OðhÞ
Steady Oð1Þ OðhÞ Oð1Þ OðhÞ
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By substituting this expression into the analytic function U, we get

Uðadh~BÞðAÞ ¼ Uðhð1� y2ÞzÞ o

oy
þ 2yz2hU0ðhð1
�

� y2ÞÞ � yUðhðy2 � 1ÞÞ
	 o

oz
:

This must be composed with the stiff flow map expðh~BÞ, that is, we set y ¼ �y and z ¼ expð�ahÞ�z, where
a ¼ �y2 � 1 > 0. Thus, stepping from the point �y ¼ ð�y;�zÞ we get

Eloc ¼ hUð�ahe�ah�zÞ o

oy
þ h 2�y�z2he�2ahU0ð
�

� ahÞ � �yUðahÞ
	 o

oz
:

In the first term on the right hand side, the argument to U tends rapidly to zero as a � h increases. In the

second term, the unbounded terms in U0ð�ahÞ are killed by the premultiplication with expð�2ahÞ when a � h
increases. This happens in all the 4 cases of splitting methods we have considered. Finally, from the pre-

ceding discussion of the behaviour of UðfÞ when f tends to infinity, we may for instance look at the BAB
case, and we find that the third term behaves as h�yð1=ahÞðo=ozÞ so we may conclude that

Eloc � � �y
�y2 � 1

� e o
oz

;

when a � h ¼ ð�y2 � 1Þðh=eÞ is large.
4. Singular perturbation approach

In this section the local error analysis is done for singular perturbation problems. To use this approach,

we will assume the vector fields to be of the form A ¼ ðfA; gAÞ, B ¼ ðfB; ð1=eÞgBÞ, thus the ODE system under

consideration can be written as

y0 ¼ fAðy; zÞ þ fBðy; zÞ;
ez0 ¼ egAðy; zÞ þ gBðy; zÞ; 0 < e 
 1:

ð19Þ

We seek solutions of the form

yðtÞ ¼ ysðtÞ þ gðsÞ;
zðtÞ ¼ zsðtÞ þ fðsÞ; s ¼ t=e;

ð20Þ

where ysðtÞ; zsðtÞ represents the smooth solutions and gðsÞ; fðsÞ the transients. These solutions are written as

power series in e:

ysðtÞ ¼ y0ðtÞ þ ey1ðtÞ þ e2y2ðtÞ þ � � � ; zsðtÞ ¼ z0ðtÞ þ ez1ðtÞ þ e2z2ðtÞ þ � � � ; ð21Þ
gðsÞ ¼ g0ðsÞ þ eg1ðsÞ þ e2g2ðsÞ þ � � � ; fðsÞ ¼ f0ðsÞ þ ef1ðsÞ þ e2f2ðsÞ þ � � � : ð22Þ

We will assume that the logarithmic norm of the Jacobian gB;z satisfies the condition lðgB;zÞ < �1 in an

e-independent neighbourhood of the solution. Thus, the transients will satisfy

kgjðsÞk6 e�js; kfjðsÞk6 e�js; j ¼ 1; 2; 3; . . . ;

for some j > 0. See Hairer and Wanner [8] for a detailed discussion of the transients.

For tJ e, which is the timescale of interest here, the transients will be damped out. Thus, we are only

looking for the smooth solution. To do so, insert (21) into (19), expand the functions into power series of e,
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and then collect equal terms of e. This procedure results in a series of differential-algebraic equations

(DAEs):

y00 ¼ f ðy0; z0Þ
0 ¼ gBðy0; z0Þ



Index 1

y 01 ¼ fyðy0; z0Þy1 þ fzðy0; z0Þz1
z00 ¼ gAðy0; z0Þ þ gB;yðy0; z0Þy1 þ gB;zðy0; z0Þz1

9>>>=
>>>;
Index 2;

..

.

where f ¼ fA þ fB. In the following, we will refer to ðy0ðtÞ; z0ðtÞÞ as the index 1 solution, ðy1ðtÞ; z1ðtÞÞ as the
index 2 solution, and so on. Since gB;z is nonsingular by assumption, the equation gBðy0; z0Þ ¼ 0 can be

solved with respect to z0. Inserting this solution into the first equation yields an ODE in y0. Similarly, the

fourth equation can be solved with respect to z1, which inserted into the third equation gives an ODE for y1,
and so on. Thus, the initial values for the yi�s can be chosen freely, while the zi�s have to satisfy some al-

gebraic constraints. For the given problem, these constraints are

gB ¼ 0 Index 1 constraint;

gB;yf þ gB;zðgA þ gB;yy1 þ gB;zz1Þ ¼ 0 Index 2 constraint;

..

.
ð23Þ

where the functions f , gA and gB and their derivatives are all evaluated at y0; z0.
To find the order of the splitting methods, we will need the power series in h of the exact smooth so-

lutions. For the index 1 variables y0; z0, these series can be expressed in terms of trees, see e.g. Roche [15].

We will only need the first few terms, which are given by

y0ðtþ hÞ ¼ y0ðtÞ þ hf þ h2

2
ðfyf þ fzð�gB;zÞ�1gB;yf Þ þ � � � ;

z0ðtþ hÞ ¼ z0ðtÞ þ hð�gB;zÞ�1gB;yf þ h2

2
ð�gB;zÞ�1

2gB;yzðf ; ð
�

� gB;zÞ�1gB;yf Þ

þ gB;zzðð � gB;zÞ�1gB;yf ; ð � gB;zÞ�1gB;yf Þ þ gB;yfyf þ gB;yyðf ; f Þ þ gB;yfzð � gB;zÞ�1gB;yf
	
þ � � �

ð24Þ
All functions and their derivatives are calculated in y0ðtÞ; z0ðtÞ. Similar series can also be found for the

higher index variables.

To analyse the numerical schemes, we will first have to discuss the flow of the two vector fields sepa-

rately. Let us start with the stiff part, given by

y 0 ¼ fBðy; zÞ; yðt0Þ ¼ y0;

ez0 ¼ gBðy; zÞ; zðt0Þ ¼ z0:
ð25Þ

This equation is of the form (19), thus the smooth solution is given by (21). For the index 1 variables y0; z0
the power series are given by (24), using fA ¼ 0 and gA ¼ 0. The algebraic variables z0 and z1 have to satisfy

the constraints

gB ¼ 0 Index 1 constraint;

gB;yfB þ gB;zðgB;yy1 þ gB;zz1Þ ¼ 0 Index 2 constraint;

..

.
ð26Þ
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We notice that z0 has to satisfy the same index 1 constraint both for the full problem (19) and the stiff part

(25). However, the index 2 constraint for B differs from the index 2 constraint (23) for the full problem,

causing a discrepancy in the algebraic variable of size e for all splitting methods concluding the step with the
flow of B.

The nonstiff flow is the solution of the system

y0 ¼ fAðy; zÞ; yðt0Þ ¼ y0;

z0 ¼ gAðy; zÞ; zðt0Þ ¼ z0:
ð27Þ

The Taylor-expansion of this problem is

yðt0 þ hÞ ¼ y0 þ hfA þ
h2

2
ðfA;yfA þ fA;zgAÞ þ � � � ;

zðt0 þ hÞ ¼ z0 þ hgA þ
h2

2
ðgA;yfA þ gA;zgAÞ þ � � � ;

ð28Þ

where all functions and their derivatives are evaluated in y0; z0.
Fig. 5 illustrates this process. For the full problem Aþ B the transient will rapidly take the solution to the

manifold MBþA, given by (23). Similarly, the transient of B takes the solution to the manifold MB, given by

the constraints (26). The flow of A moves the solution away from both manifolds. Thus we might expect an

error of OðeÞ for all methods concluding their step by B, and an error of order OðhÞ for methods concluding

with A. This is consistent with the numerical results given in Fig. 3, as well as those given in Table 1, the

steady case. In the following, a more refined analysis will confirm this.

Since the numerical solution is alternating between the flow of B and the flow of A, it is reasonable to

assume that the initial values of the nonstiff problem A can be expressed as a power series in e, like

yðt0Þ ¼ y0 ¼ y00 þ ey01 þ e2y02 þ � � � ;
zðt0Þ ¼ z0 ¼ z00 þ Dz0 þ eðz01 þ Dz1Þ þ e2ðz02 þ Dz2Þ þ � � � :

ð29Þ
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Fig. 5. The flows of Að–– � –– � ––Þ;Bð––––Þ and Aþ B ð––Þ for van der Pol�s equation.
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In the series of z0, z0j denote the variables satisfying the algebraic constraints (26). Thus, if the step is

composed such that a step given by A is proceeding a step of B, then Dzj ¼ 0. This is not the case for the first

step, neither will it be for the ABA-scheme. We will make the assumption that Dzj ¼ OðhÞ. By inserting (29)
into (28), expanding the functions around y00 ; z

0
0, and collecting equal terms of e we find that the solution of

(27) is of the form (21), with

y0ðt0 þ hÞ ¼ y00 þ hfA þ hfA;zDz0 þ
h2

2
ðfA;yfA þ fA;zgAÞ þ Oðh3Þ;

z0ðt0 þ hÞ ¼ z00 þ Dz0 þ hgA þ hgA;zDz0 þ
h2

2
ðgA;yfA þ gA;zgAÞ þ Oðh3Þ;

y1ðt0 þ hÞ ¼ y01 þ hðfA;yy01 þ fA;zðz01 þ Dz1ÞÞ þ Oðh2Þ;
z1ðt0 þ hÞ ¼ z01 þ Dz1 þ hðgA;yy01 þ gA;zðz01 þ Dz1ÞÞ þ Oðh2Þ;

..

.

ð30Þ

This can now be used to find the series of the numerical solutions of the splitting schemes. Let us start with

the BA-scheme. Let ðyA0 ;~zA0 Þ be the solution after one step following the flow of A, given by (30). This will be

the inital values for the solution given by the stiff flow B. However, the inital values of the smooth solution

have to satisfy gBðyA0 ; zA0 Þ ¼ 0, thus

zA0 ¼ z00 þ hð�gB;zÞ�1gB;yfA þ Oðh2Þ:

The solution from the vector field B using ðyA0 ; zA0 Þ as initial values is given by

y10 ¼ yA0 þ hfB þ
h2

2
fB;yfB
�

þ fB;zð � gB;zÞ�1gB;yfB
	
þ Oðh3Þ

¼ y00 þ hf þ hfA;zDz0 þ
h2

2
ðfA;yfA þ fA;zgA þ 2fB;yfA þ fB;yfB þ 2fB;zð�gB;zÞ�1gB;yfA

þ fB;zð�gB;zÞ�1gB;yfBÞ þ Oðh3Þ;

the expressions being evaluated at yA0 ; z
A
0 . Comparing this with the exact solution, the local error will be

y0ðt0 þ hÞ � y10 ¼ �hfzDz0 þ Oðh2Þ:

The local error of z10 will be of the same order, since both the exact and the numerical solution of this

component are obtained from the algebraic constraint gBðy0; z0Þ ¼ 0.

Comparing the second constraints of Eqs. (23) and (26) yields the error in z11:

z1ðt0 þ hÞ � z11 ¼ ð�gB;zÞ�1ðgA � ð�gB;zÞ�1gB;yfAÞ þ OðhÞ:

Thus, to conclude the analysis of the BA-scheme, the local error after one step will be

yðt0 þ hÞ � y1 ¼ �hfA;zDz0 þ
h2

2
ðfA;yfB � fB;yfA þ fA;zð�gB;zÞ�1gB;yðfA þ fBÞ

� fB;zð�gB;zÞ�1gB;yfA � fA;zgAÞ þ Oðh3 þ ehþ e2Þ;
zðt0 þ hÞ � z1 ¼ eð�gB;zÞ�1ðgA � ð�gB;zÞ�1gB;yfAÞ þ Oðh2 þ ehþ e2Þ:

Thus, the local order of the y-components is 2, but it might drop to 1 if the initial value z0 is not properly
chosen. The z-components have a constant error of size e.
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A similar analysis for the remaining schemes shows that:

AB

yðt0 þ hÞ � y1 ¼ h2

2
ðfB;yfA � fA;yfB � fA;zgA þ fA;zð�gB;zÞ�1gB;yðfA � fBÞ

þ fB;zð�gB;zÞ�1gB;yfAÞ þ Oðh3 þ ehÞ;
zðt0 þ hÞ � z1 ¼ hðð�gB;zÞ�1gB;yfA � gAÞ þ Oðh2 þ eÞ:

BAB

yðt0 þ hÞ � y1 ¼ h2

2
ðfA;zð�gB;zÞ�1gB;yfA � fA;zgAÞ þ Oðh3 þ ehþ e2Þ;

zðt0 þ hÞ � z1 ¼ eð�gB;zÞ�1ðgA � ð�gB;zÞ�1gB;yfAÞ þ Oðh2 þ ehþ e2Þ:

ABA

yðt0 þ hÞ � y1 ¼ h2

4
ðfA;zð�gB;zÞ�1gB;yfA � fA;zgAÞ �

h
2
fA;zDz0 þ Oðh2 þ ehþ e2Þ;

zðt0 þ hÞ � z1 ¼ h
2
ðð�gB;zÞ�1gB;yfA � gAÞ þ Oðh2 þ ehÞ:

In general, since the ABA-step is usually followed by another ABA-step, the initial values will normally be

inconsistent, and Dz0 ¼ �ðh=2Þð�gB;zÞ�1gB;yfA.
These results are in coincidence with the results given in Table 1. The steady case is equivalent to the

situation where the initial values are satisfying the constraints (26). For the general case, Dzj might differ

from zero, causing an error OðhÞ for the BA-scheme.

In the case of van der Pol�s equation (6), the index 1 constraint is simply ð1� y20Þz0 ¼ 0, thus z0 ¼ 0.

Under this condition the discrepancy between the index 2 manifolds of the full and the stiff problem will be

e � y0=ð1� y20Þ, resulting in a constant error of this size in the z-component for the BA and the BAB schemes.
This is consistent with the results obtained when the same problem was analysed by the use of Lie-series.
5. Conclusion

We have analysed the principal part of the local error in various types of splitting methods where the

vector field has been split into a stiff and a nonstiff part. Two approaches have been used, one based on Lie

series and the other on singular perturbation. In general, the presented analysis holds for general nonlinear
vector fields, but some specific examples that appear more commonly in applications have been given

particular attention.

One may ask what the theory presented here says about which of the four splitting methods which

should be used in practice. We believe that the smallest local error is obtained with the BAB and BA

schemes for stepsize larger than the asymptotic regime. However in selecting the scheme to be used, one

should look closer at the global error. Here, we have considered instead the local error and we have argued

that it is important to study by itself. This is because it allows us to study error and stepsize control and

eventually it might aid us in designing robust and efficient new splitting methods.
The analysis shows that there are stepsize intervals for which the local error behaves very differently from

what the classical theory based on Taylor series expansion predicts. We see that with certain choices of

splitting methods, the local error can be almost constant for fairly large stepsize intervals. One may be led

to think that this behaviour contradicts other known results from the literature, e.g. [9] on the order of the
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local error in splitting methods. However, this is not so, because the order zero behaviour reported here

happens only for finitely small stepsizes, and thus the results can still be reconciled with those of Jahnke and

Lubich. The difference is that the analysis we present here is somewhat more detailed.
Finally, we believe that an interesting open problem is to conduct a similarly detailed analysis of the

global error in the situations described in this paper, indeed, some initial numerical results show that the

global error also behaves differently from what the classical theory predicts.
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